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COMPARISON OF BIRKHOFF TYPE 
QUADRATURE FORMULAE 

BORISLAV BOJANOV AND GENO NIKOLOV 

ABSTRACT. The classical approach to the theory of quadrature formulae is based 
on the concept of algebraic degree of precision (ADP). A quadrature formula Q1 
is considered to be "better" than Q2 if ADP(Q1) > ADP(Q2). However, there 
are many quadratures that use the same number of evaluations of the integrand 
and have the same ADP. Then, how should one compare such formulae? We 
show in this paper that the error of the quadrature depends monotonically on 
the type of data used. Roughly speaking, the lower the order of the derivatives 
used, the smaller is the error. 

As a consequence of the main result we demonstrate the existence of Birkhoff 
quadrature formulae of double precision. 

1. INTRODUCTION 

Let E = (e)m0+ jN1 be a given incidence matrix, i.e., a matrix containing 
only 0 and 1 entries. Denote by JEl the number of l's in E. Without loss 
of generality we assume in this paper that E is normal, which means that El 
equals the number N of columns in E. 

Any maximal sequence of 1-entries ei = = ei j+1- 1 = 1 in E is called a 
block. The block is even (odd) if its length, i.e., the number 1, is even (odd). 

The first 1 -entry of the block defines its "level". Precisely, the level of the 
block eij = ...= ei j+- = 1 is j. 

We study here quadrature formulae of the form 

(1) f I(f) f(t) dt ai j f(xi) =: S(f) 
Ja e,=1 

with nodes x = (xo, ...,Xm+), a=xo<x1 < ...< xm < xm+l = b, and real 
coefficients {aij}. G. D. Birkhoff gave a kernel representation of the error of 
(1) in his famous paper [2]. 

Recall that the algebraic degree of precision (ADP) of (1) is the maximal 
integer n such that (1) is exact for all f E 7rn (7rn denotes the set of all algebraic 
polynomials of degree < n). 
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Suppose that the matrix E satisfies the P6lya condition 
m+1 k 

E Eej >k + 1 k =0,...N- 1. 
i=O j=O 

Then, it is not difficult to verify that 

(2) ADP(1) < a(E) - 1, 

where a(E) E I + the number of the odd blocks in the interior rows of E. 
Indeed, add one additional 1-entry to each odd interior block to obtain a 

new matrix E = {e}i j . Clearly, E has only even interior blocks, IEI = v(E), 
and E satisfies the P6lya condition. Then, by the well-known Atkinson-Sharma 
theorem [1], there is a polynomial P(t) = tU(E) + *. such that P(j)(xi) = 0 if 

eij = 1. Since P(t) has a constant sign on [a, b], faP(t)dt 5$ 0. Thus the 
rule (1) is not exact for f = P and therefore ADP(1) < a(E) - 1. 

The quadrature formulae defined by an incidence matrix E with odd interior 
blocks and which have ADP equal to a(E) - 1 are called Gaussian quadrature 
formulae. 

We assume henceforth that the matrix E has only even blocks in the interior 
rows. Then E = E, and hence v(E) = JEl. Note that E is poised, hence, by 
the Atkinson-Sharma theorem [1], we can construct an interpolatory quadrature 
formula (1) based on E. By construction, ADP( 1) = JEl - 1. Thus, in view 
of (2), for any P6lya matrix E with even interior blocks, the corresponding in- 
terpolatory quadrature formula (1) has maximal ADP. One cannot distinguish 
between these quadratures if only their ADP and the number of the evalua- 
tions are taken into account. We shall use in this paper the remainder of the 
quadratures (1) to compare formulas of prescribed type. 

With every pair (x, E) we associate the polynomial 

Q(t) = Q(x , E; t) = tN + N:= JE, 

such that 
Q(J (xi) = 0 if eij =1. 

Note that Q(t) does not change sign on [a, b], since its zeros are of even 
multiplicities. 

Let P(f, (x, E); t) be the polynomial of degree N - 1 that interpolates f 
at (x, E). Suppose that f is N times continuously differentiable. Then, as in 
the classical Hermitian case, one can easily show (see [2 or 11, Theorem 7.5]) 
that for each t E [a, b] there is a 4 E [a, b] such that 

f(t) - P( f, (x, E); t) = fN () Q(x, E; t). 

Integrating both sides of this equality, we get the estimation 
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with M:= maxa<t<b 1f(N)(t)I/N!. Evidently, the quantity 

R(x, E):= Q(x, E; t)dt 

is the major term in the estimate of the error of (1). 
The relation between the Gaussian quadrature formulae and the extremal 

problem infx R(x, E) was discovered by Jacobi [7] and exploited later by many 
authors. 

This paper is a step towards proving the following: 

Conjecture. The quantity inf{R(x, E): a < xi < b, i = 1, ..., m} decreases 
when the level of the blocks in E falls. 

We give here a proof in the special case only when E satisfies the condition 
(i) Each interior row of E contains only one block, and it has length 2. 
We prove also that the infimum is attained for some points xl, ..., xm in 

(a, b) which are located at the nodes of a Gaussian quadrature formula. This 
is a natural generalization of the famous result obtained by Gauss. 

2. AN AUXILIARY RESULT 

We give in this section an auxiliary result which is of some independent 
interest for Birkhoff interpolation. 

Denote by ei = (ei1, ... , e1 -) the rows of E = (e 1)m+ 1 * Given the 

points x = (xO, xm+) X a = xO < ..< xm+= b, we say that the function 
f vanishes at (x, E), and write 

fj(x,E) 
= 0 

if 

f(Ti) = 0 for sij =1 

where {fTi} are the distinct points in the sequence {X0, ..., xm+ } and {sij} 
are the entries of the coalesced matrix c(E). Recall that c(E) is defined on 
the basis of E and x by the so-called method of coalescence (see [10 or 11]). 
In other words, if xPI < xp = = xq < xq+1 then the rows ep, ..., eq 
of E are presented in c(E) as one new row (s0, ..., N- I)' formed by the 
procedure: 

1) Add ep + +eq to obtain (sOe . SN'-). 

2) If si > 1, set si := si -1, si+ :=s i+1 +1 (i=0 *...- N -2). 
3) Repeat 2) if necessary. 

The determinant 

D = D(x, E) = det [ {1, t, *,t. } 1 
(x, E) i 

of the system {zN' c 1ta }I~xE 0 plays an essential role in our study. 
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If the matrix E satisfies the P6lya condition and if it has only even blocks, 
then it follows from the Atkinson-Sharma theorem [1] that 

(3) D(x, E) :O 0 

for every x. The next lemma asserts even more. Before formulating it, we 
introduce some notations which will be used throughout this paper. 

Let a be an arbitrary fixed integer, 1 < a < tn. Delete ea from E and 
denote the resulting matrix by Ea. 

For any 4 E (a, b), denote by x(4) the set of points (xO, ..., x.1, xa+, 
... , x 4), ordered in nondecreasing order. Set 

E(4) := Ea U ea, 

where the row e a is inserted in the position corresponding to the position of 4 

in x(g). 

Lemma 1. Suppose that the incidence matrix E satisfies the P6lya condition and 
contains only even blocks in its interior rows. Then the determinant 

D(x 5 (eO 5 ei15.. * eim 'em+l )) 

has a constant sign for every rearrangement (ei, ... , ei ) of the rows (el,. . . 

em) and each x = (xO, ..., xm+i), a = xo < XI < * < xm < xm+l =b. 

Proof. It is clear that the lemma will be proved if we show that, given any 
a E {1, ..., m}, the determinant 

D(4) := D(x(4) , E(4)) 
has a constant sign for each 4 in (a, b) . In order to see this, observe that the 
function D(4) has possible break points only at 4 = xi, i = 1, ..., a- 1, 
a + 1, .. , m . Therefore, the only thing we need to show is that 

sign D(xi - J) = sign D(xi) = sign D(xi + J) 

for sufficiently small J. 
Since any even block can be considered as a coalescence of several blocks of 

length 2, we may restrict ourselves in this proof to the case when ea contains 
exactly one block, and it has length 2 and level k - 1 . 

Consider the function 

Do(4) ._|D(4) for 4 54 xl , ...-, xM 

? *tlimqX D(rI) for =xi, 1 m. 

This is a polynomial function. Then, by Taylor's formula, 

DO(4)~~ =d o(i( xi) !- 

Let eilk-l+n and ei k+n be the first two zeros in the sequence e1 k-il 

ei k ej It is easy to see that Doj)(xi) = 0 for j = 0..., n - 1, 
where n := n1 + n2. In addition, 

Don) (xi) = MD(xi) 
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with some positive integer M. Therefore, 

Do(4) = MD(xi)(4-_Xi)n In! + 
?(g _ Xiln+l) . 

Since ei contains only even blocks of l's, the number n2 - n , and consequently 
n, is even. Then 

sign Do(xi ? d) = sign D(xi) 
for sufficiently small a > 0. The lemma is proved. o 

3. THE MAIN COMPARISON RESULT 

Most of the propositions we prove in this paper deal with matrices E that 
have the following structure: 

(ii) For a fixed a E { 1, ... , m}, the row ea contains only one block, and it 
has length 2. All interior rows of Ea contain only even blocks, and Ea satisfies 
the P6lya condition. 

Set xa := x\xa. Then, by the Atkinson-Sharma theorem [1], the Birkhoff 
interpolation problem, based on (xa, Ea), is poised. 

Denote by p(t) = tN-2 + *-- the polynomial which vanishes at (xa, Ea). 

Define the polynomial 0o(t) = tNi + by the condition 

(4)~ ~ ~~~~~~, {Ja(9 Wdt = 

It is not difficult to show that the linear system (4) with respect to the coefficients 
of ( has always only one solution. Indeed, assume the contrary. Then there 
exists a nonzero polynomial 0 E 7N-2 which satisfies (4). But the condition 

fta (0(t) dt = 0 implies that (o0(t) has a zero of odd multiplicity which is, 
evidently, not specified in (xa, E.). Then, by the Atkinson-Sharma theorem, 

0(t)-= 0 a contradiction. 

It follows from Rolle's theorem that ( (k 1) (t) has zeros which are not speci- 
fied in (xa, Ea) . Moreover, all zeros of q (k 1)(t) that are not postulated in (4) 
are produced by Rolle's theorem from (xa, Ea) and C, where C is that zero of 
(o whose existence is guaranteed by the first equation in (4). Let us call them 
Rolle's zeros. They lie at distinct points t <... < tr in (a, b), and their num- 
ber r can be determined exactly on the basis of the columns 0, 1, ..., k - 2 
of E. a 

Denote by ei 8 -1 and ei j , respectively, the first and the second O-entry in 
the sequence e i,k- 5 e k,. ei, N- I Define 

JO : = {i9 ,f(k- 1)(X d = ?, pi = ii = k} . 

The set {t }r consists of all simple zeros j 5... , 4 of &(k i)(t) that are not 
specified in (xa, E1)9, and all points {xi: i E J} where 

J := {i:i : a, 0<i< m+ 1, 5 u-(i) (xi).= 0}\J0 
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Clearly, 

(5) { (k) ?, i= 1 . q 

(O(A) x ) 4 ifi EJ. 
Otherwise, it would follow that _=0. 

Let Q ~(t) = tN + be the polynomial which vanishes at (x(4), E(4)). Set, 
for simplicity, 

R< :=R(x(4), E(4)) = 1b Q (t) d t 

Theorem 1. Let the normal incidence matrix E = (ei})lioi N-i and the number 
a satisfy (ii). Given arbitrary nodes a = x0 < x <... < xai_ < Xa!+ < < 

Xm<Xm+i=b, let 

min{R,: a < < ? b} = R*. 

Then 

(6) a< < b 

and 

(7) (O(k- 1)(* = o 

where k - I is the level of the block in ea. 
Moreover, if 4*=xi for some i E {1, ..., m}, then 

(8) &(O(-i)($*) = 0, 

where ei /1 - I is the first 0 in the sequence eik-I , ei k, * *. eiN-1 

The proof of this theorem goes through several lemmas. 

Lemma 2. The polynomial p satisfies 

P- (i) 54 ? for i = 1 q 

p (xi) 5 0 for i e J. 

Proof. Let 4 5$ xi, i E J. Summing the first N - 1 (and N) columns of 
D(c), multiplied by the coefficients of p (and q', respectively), we get 

(P 
( k)f(4 D(~) = det (k) ( k) A, 

where N-3 

A := det ( ,tX *;E N3 

Evidently, by the Atkinson-Sharma theorem, A 5$ 0, and A does not depend 
on . Moreover, in view of Lemma 1, D(4) has a constant sign for each 4 in 
(a,b). Let 
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If j = we get 
. (k- )(i) . ((k) D (4i) = A * 

0 
(4id - 

Hence, 

(9) signp (k- () =e sign (i), i =1,...,q. 

Similarly, in the case i E J, we get 

D(xi) = det (oP (I)(xl) (I (x ) A 

and therefore, 

(10) sign p(/u1 (xi) = e * sign( ) (xi) for i E J. 

The assertion of the lemma follows from (9) and (10), on the basis of (5). o 

The following lemma shows that the zeros of 9 (k 1) and p(k 1) interlace in 
a certain sense. 

Lemma 3. The derivative p(k 1) has at least one zero in (tj, tj+I) (I = 1, .... 
r - 1) which is not specified by (xa, Ea) . 

Proof. Let us first illustrate the proof of this claim in the special case when 

tj = Xi = tj+ I and (,(k-1)(t) has zeros {xl} of total multiplicity n in 

(tj, tj+I). 
Note that all these zeros {xl} are specified by (xa, Em). Thus, p(k 1)(t) 

vanishes also at {xl }I. 
Since ( (k 1) has n+2 zeros in [tj, tIj+ ], 5 (k) will have, by Rolle's theorem, 

n + 1 + no zeros in (t1, tj+ 1) = (hi, 5i+ ) . Here, no is an even number, in view 
of assumption (ii). Thus, 

sign (ki) sign k)(41) = (--)n+n+l (-1n+ 

Now the relation (9) implies 
(k- 1) (k-i1) n+1 (11) sign p - (4) * sign p (k i+1) = (-1) 

But all zeros {xl} of p(k 1) in (tj, t +1), which are prescribed by (xa, Ea), 

have total multiplicity n. Then the relation ( 11) shows that p(k 1) must have 
at least one more zero in (tj, tj+ ). 

Consider another case: 

tj = Gil, t1+ = xi for some i E J 

and ((k-1) has zeros {xl} of total multiplicity n in (tj, tj+I). 
Since ((k-1) has 1+n + (A -k + 1) zeros in [tj, t1j5 , (k) will have, by 

Rolle's theorem, n + Ai - k + 1 + no zeros in (tj, tj+1], with some even number 
n0. Then, 

(k) (- )n+l-k+ sign~ (9 . sign = -1 (x k+ 
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Taking into account (9) and (10), we get 

(12) sign p (k- ( ) sign p (Xi) = (-1)n+A -k+l = (_I)n+u,-k+l 

since Ai - ji is even. 
Now observe that p(k- 1) (xi) -- 0 if i = k and p(k- 1) (xi) = (x)= 

=0 if pi > k. Recall, in addition, that all zeros {x1} of p(k 1) in (tj, tj+1), 
which are specified in (xa, En), have total multiplicity n. Then, in view of 
(12), p(k-1) must have at least one more zero in (tj1 tj+,). 

The verification of the lemma is similar in the remaining cases and is omitted 
here. o 

Proof of Theorem 1. Suppose that 4* is an extremal point, i.e., that 

(13) Rag < RX foreach E [a, b]. 

Set, for simplicity, R :=R, R := Q* I 

Consider the interpolation problem 
N 

{C cO(t) + C2P(t) + E Cit } 
N 

E) - 

i=3 ~(x, E) (x, E) 

with respect to {ci}>N. Since Ao, p, and {ti }N-3 are linearly independent, there 
exists a unique solution {ci(4)} to this problem. Then, 

N 

Ci (4)t | o0. 
i=3 (x E) 

Thus, ci(4) = 0 for i > 3. Therefore, 

(14) Q(t) = Q(t) + c1(4) (t) + c2Q)p(t) . 

Note that sign p(t) = sign Q,(t) and fa' (t) dt = 0. We assume for con- 
venience that Q(t) > 0 on [a, b]. Then the assumption (13) leads to the 
inequality 

c2( ) for each E [a, b]. 

Next, we get from (14) 

n(k- 1) (4) = C2(4d - * (k-1) 
(4i) q 

i ,. ,q 

Q('1 - l) (xi) = C2(Xi) * p ' (xi), i E J. 

Therefore, 

15~~~~~ J (k- I)(d 
- * p(k-1) (4i) < O for i =1, 5 ................ , q 5 

{ Q(8 - 1) (xi) * p (,"'') (xi)<O for iEJ. 

Add also the fact that 

(16) sign Q(k- 1) (a + H) = sign p(k-1) (a +) 
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for sufficiently small J > 0 . To establish (16), we note that eON-2 = eON-1 = 

0, since Ea is a P6lya matrix. This yields signQ(N-2)(a) = sign p(N2)(a). 
Then the equality (16) follows immediately from Lemma 2.2 of Jetter [8], which 
asserts that Q() (a) = 0 if and only if e01 = 1 and, equivalently, Q() (a + d)a 

Q(l+ )(a +5) > O for small a > 0. 
The next argument presents the main idea of the proof of the theorem. 
Suppose that R < R, for each 4 E {tI, ... , t,} . This leads to strict inequal- 

ities in (1 5). Then the same arguments as in the proof of Lemma 3 show that 
Q(k 1)(t) has at least one Rolle's zero in (ti, ti+I) for i = 1, ... , r - 1 . Now 

observe that the number of Rolle's zeros of Q(k 1)(t) and p(k 1)(t) is deter- 
mined by xa and columns 0, ..., k - 2 of E.. Since the same part of Ea. 
together with the point C, implies r Rolle's zeros of f0(k- 1)(t), it follows that 
Q(k- )(t) and p(k 1)(t) have r - 1 Rolle's zeros in (a, b). Thus, all Rolle's 
zeros of Q(k- 1) and p(k 1) lie in (t1, tr) . On the other hand, the inequalities 
(15) and (16) imply that Q(k- 1) or p(k 1) must have at least one Rolle's zero 
in (a, t1), a contradiction. 

So, we proved that 

min{R,:: E [a, b]} = min{R: E{t, , tr}} 

However, the theorem was formulated in a slightly stronger form. It remains 
to show that the minimum of R, on [a, b] cannot be attained at a point 4 

distinct from the Rolle's zeros t1, .5. ., tr of (k- 1) . In order to do this, we 
shall apply the same idea just demonstrated above. 

Suppose that &* 0 {t1, ... , tr}. Then some of the relations (15) turn into 
equalities. But this is not a serious difficulty. A careful study of the behavior of 
Q(k 1)(t) and p(k-1)(t) near the points tl, ..., tr based on the inequalities 

(15), shows that for sufficiently small J > 0, there exist points t?0 E (ti - , t1 + 
Y), i= 1, ..., r, such that 

(17) Q (k- 1) (t?) . p(k- 1) ( t) < ?. 

The observation (17) is obvious if c2(ti) < 0. Otherwise, we have to take into 
account the fact that Q(k 1)(t) and p(k 1)(t) have a zero at ti of different 
parity, i.e., of even, odd multiplicity, or vice-versa. (This is the point where we 
use the assumption that * -- t 1, ... , tri) 

We proceed as before. It follows from Lemma 3 and (17) that Q(k- 1) (and 
p(k-l )) has at least one Rolle's zero in (to , to I) . Then (16) leads to a contra- 
diction. Thus * e {tl, ..., tr}. This implies (6). The theorem is proved. o 

Now we are prepared to prove our first comparison result. 

Theorem 2. Let the normal incidence matrix E = (e1 m)71 N-1 and the number 
a satisfy (ii). Push down the block in the row ea of E one position (i.e., decrease 
the level k - 1 of the block by 1) and denote the resulting matrix by E. Given 
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arbitrary nodes a = x0 < xi <.. < Xa- < Xa+1 < <Xm < Xm+ = b, the 
following inequality is true: 

min R(x(4), E(4)) < min R(x(4), E(4)). 

Proof. It is known (see [6]) that the Birkhoff interpolating polynomial 
P(f, (x, E); t) depends continuously on x. Then fbQ (t)dt is a continu- 
ous function of 4, and therefore R, attains its minimal value at some point 
4* in [a, b]. According to the Characterization Theorem 1, 4* satisfies (6), 
(7), and (8). Denote now by bj (4) the coefficient of f(j) (4) in the interpolatory 
quadrature formula (1), based on (x(4), E(,)). We claim that 

18 
f bk(*) =0 if4 E {1 **... * q}, 

(18) l b~(*)=O if *=xiforsomeieJ. 

Indeed, by Theorem 1, the extremal point * coincides with some Rolle's zero 
of the corresponding polynomial (0(k- 1) (t). Then in both cases the coefficient 
b(4*) from (18) equals const fja (9o(t) dt. But the integral is equal to zero, in 
view of (4). The proof of claim (18) is completed. 

Let Q and Q be the polynomials of degree N with leading coefficient 1, 
which vanish at (x(4*), E(4*)) and (x(4*), E(4*)), respectively. Since f (t) := 
Q(t) - Q(t) is a polynomial of degree < N - 1 and ADP(1) = N - 1, we get 

f (t) dt = bk(*) f(k)($) ) 0 

in the case E {, ...f , X} . Thus, 

(19) R* = R(x( *), E($*)) > min R(x(4), E(4)). 

Similarly, one can verify (19) in the case ge {Xi: i E J}. The theorem is 
proved. O 

Remark 1. The next simple example shows that the error R(x, E) does not 
always decrease when we reduce the level of the blocks, keeping the nodes fixed. 

Let [a, b] := [0, 1], m = 1, 
-I 0 O- -1 0O- 

E= 0 1 1 , E= 1 1 0, x=(O,, 1). 

LO 0 00 L 0 0 

.Qt 3 2 2 2 
Then, Q(t) t - 3t + 3t, Q(t) = t(t -), and therefore 

=| fQ(t)dt= -4+ 2 

R= Q(t) dt = 4 - 24 + 

Clearly, RE < R for any fixed 4 e (0, 3). 
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Remark 2. The following example shows that it is not possible to prove strict 
inequality in the assertion of Theorem 2. 

Let [a,b]:=[0, 1], m=2, a=2, 

1 1 0 0 0 0- 

E 0 1 1 0 0 0 
E 0 0 1 1 0 0ol 

LO 0 0 0 ? ?J 

I I =(,-,,) 
E = 0 1 0 0 O0 X x= (O. xl, Al. 

Observe that the functions (o and p, introduced at the beginning of this section, 
are the same for E and E. Clearly, q/ has a unique Rolle's zero ?, 0 < n < 1, 
produced by x0 and C. Moreover, ? depends continuously on xl in [0, 1], 
and therefore there exists a situation when ?Ix= . We shall assume here that 

xi is chosen in that way. Now, by Theorem 1, min R(x(4), E(4)) is achieved 
only at * = xi . Let 

b 

(20) f f(t) dt z a0f(0) + a, f (0) + b f (xl) + b2-f"(x1) + b3f "(xl) 

be the interpolatory quadrature formula based on (x(4*), E(4*)). (b4 = 0, 
according to Theorem 1.) Since (20) is exact for 7r5, we get 

I 

Jp(t)dt= = Pb3 *P (xI) > 0. 
o~~~~~ 

It is easy to verify that p"'(xl) > 0. Therefore, 

(21) b3 > 0. 

Note that q"' has exactly two Rolle's zeros Xl and 42 ' 0 < I < X1, 2 = X1 

Thus, by Theorem 1, minR(x(4), E(4)) can be achieved at I or 42 only. Set 

QR(t) := Q(x(4i) 5 E(4E); t) 5 i = 1, 2. 

Now, applying (20) to Q2(t) - Q1 (t), we get 
I 

|[Q -IQ(t)]dt=-b , * Q (xI). 

Since K2'// (x 1) > 0, (21) implies 
I I1 

| 2(t) dt < Q, Q(t) dt. 

Therefore, 

min R(x(4), E(4)) = R(x(42), E(92)) = min R(x(4), E(4)). 
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4. COMPARISON WITH RESPECT TO THE ENDPOINT TERMS 

The previous theorem treats interior blocks only. Next we shall prove a 
similar result about the monotone dependence of the error R(x, E) on the 
level of the 1-entries in the first and last rows of E. 

Our proof is based on the following extension of the classical Budan-Fourier 
theorem. 

Denote, as usual, by S (fi, ... , n) the number of the strong sign changes in 
the sequence of numbers fi, ..., fn. Let S+ (f , ... , fn) denote the maximal 
number of sign changes in fi, ... , f, where the zeros are interpreted as -1 
or +1. Let IntE be the interior of E (i.e., the matrix obtained from E by 
deletion of the first and last row). 

Lemma 4. Suppose that the incidence matrix E = (e1 m)i+O 1-0 satisfies the 
P6lya condition and all non-Hermitian blocks of IntE are even. 

Then 

IntEl < S (f(a), .. ., f (a)) -S+ (f(b) f(/N)(b)) 

for each polynomial f of exact degree N which vanishes at (x, E) for some 
points a = xo < ... < xm < xm+i = b. 

The lemma is an immediate consequence of Theorem 2.5 in [ 1]. The proof 
is given there. 

Suppose that the incidence vectors e = (e1, ..., eN-1) and e = (e~l, .... 
eNfl) have the same number of 1-entries. Let 

ei = 1 if and only if i=)2,.., AnlA 

ei = 1 if and only if i = Al An. 

We write here, for the sake of simplicity, e < e if Ai < Ai for i = 1 n . 
m+1 N-1 I+ Ni1 

Theorem 3. Let the incidence matrices E = (e) = and E = (e- j)im=+ 1=0 

have only even blocks of 1 's in the interior rows and satisfy the P6lya condition. 
Suppose that ei = ei for i=1, ,m and eo < eon em+l < em+lm 

Then 
R(x, E) < R(x, E) 

for each x = (xo,..., xm+), a = xo < xi < ..< xm+ = b. 

Moreover, equality holds if and only if E - E. 

Proof. We use here an idea employed in [4, Theorem 3.5]. 
Suppose that 

eo 1 j = if and only if j = Al An 

em+l i = o if and only if i =p r byn {, and { 

Similarly, the I-entries of -e and -em are prescribed by 0 inln and 
f 
{,il'. 
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Evidently, the assertion will follow by pairwise comparisons and symmetry, 
if we prove that 

(22) R(x, E) < R(x, E) 

in the case 

.~~~~~ Hui = Hi I=1,... nl, 

Ai Ai forall i k, 

iAk A ik -I1 where A 
k - I {2 i~ Ani in 

In order to do this, we study the polynomials Q and Q defined by (x, E) and 
(x, E), respectively. Without loss of generality, we may assume that they are 
nonnegative on [a, b]. Suppose that Q(T) > Q((T) > 0 for some T E (a, b). 
Consider the polynomial 

g(t) = Q(t) - Q(t), 

where /: Q(T)/Q((T). Clearly, 0 < /3 < 1. Then g(t) is of degree N and 
has a leading coefficient of the same sign as that of Q. In addition, 

{ g(T) = 0, 

lg()(xi) = 0 if eij = -1, i =1, .. .,m, 

and all these zeros are prescribed by an incidence matrix E1 which satisfies the 
requirements of Lemma 4. Note that I IntE1 = lInt El + 1 = N - n - n1 + 1. 
Therefore, by Lemma 4, 

(23) N-n-n1 +1 < S(g(a), g(N) (a))-S+(g(b), ... , g(N)(b)). 

It then follows from the obvious estimations 

S (g(a), ... (N) (a)) < N- n + 1, 

s (g(b), *be, g(N)(b)) > n1 

that (23) is actually an equality. Thus, 

S (g(a), ...,g (N)(a)) = N- n +1 
On the other hand, since 

sign g(N) (a) =sign Q() (a), 

sign g (a) = -sign Qj k)(a) = sign Q (a), 

where eo A is the first 0-entry in the sequence e0 Ak + * eON- 1, we conclude 
(see [4] for details) that 

S-(g () g(N)(a)) < S-(Q(a), , Q(N- l)(a)) = N -n, 

a contradiction. Thus, Q(t) < Q(t) for each t E [a, b]. This implies (22), 
since Q 0 Q. The proof is completed. n 
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5. EXISTENCE OF BIRKHOFF QUADRATURES OF DOUBLE PRECISION 

The fundamental question of existence of Gaussian quadrature formulae of 
preassigned non-Hermitian type was studied first by Micchelli and Rivlin [12] 
(see also Dyn [5]). 

We say that the quadrature formula Q has double precision if it uses N 
evaluations and ADP(Q) = 2N - 1. Clearly, any such formula is defined by 
a matrix E that has blocks of length 1 only. For example, the Gauss quadra- 
ture formula has double precision. Jetter [8] proved recently the existence of 
pyramidal Birkhoff quadratures of double precision. We shall derive here an 
existence theorem treating the general case. The major ingredient of our proof 
is the characterization result of Theorem 1, combined with the technique of 
splitting nodes, described in the next propositions. 

Lemma 5. Let the incidence matrix E = (e. )rm+1 N-i satisfy the P6lya condi- ii 1-i= ' = 1-0 
tion. Suppose that all interior blocks of E are even. Let {aij} be the coef- 
ficients of the interpolatory quadrature formula (1) based on (x, E) for some 
fixed nodes x = (xo, ..., Xm+1), a = x0 < xi < < xM+ = b. Let 

(eij, ei1 +1, ..., ein), n - j > 3, be an arbitrary interior block of E. Sup- 

pose that 

1) ai k=O forsome k{i+3,...,n}; 

2) Q(n+1) (X 5 E; xi) :A0; 

3) n - k is an even number. 

Then for each j < r < k - 2 there exists a pair (xh, E,) such that 

(24) bQ(xh, Ei; t) dt < bQ(x, E; t) dt 

The pair (xh, Ei) is of the form 

(Xh =(X0 *... ,x xi + h, xi+i * ... , xm+i), h > O; Ei is ob- 

(A) tainedfrom E bysetting ei, k-l = eik = 0 in ei and inserting a 
new row e between ei and ei+1 which has I 's only in positions 
r and r+ 1; 

or 

Xh = (X0 , ...,5 Xi_, 5T-h, xi , T+h, x i+1 , *i xM+1), h ; 

Ei is obtained from E by setting eij = = eik = 0 in ei and 
(B) inserting two new rows eTh and eT+h corresponding to the points 

T- h and T+ h, one of which has I 's in positions j, .. ., k-2, 
and the other in r, r + 1 only. 

Proof. Since the polynomials h(t) := Q(Xh, Ei; t), 5Q(t) :=Q(x, E; t) have 
the same sign in (a, b), we assume below for convenience that Q h(t) > 0, 
Q(t) > 0 in (a, b). 

Suppose that there is no xh of the form (A) for which (24) holds. Then 
jb 

[O .0 Q\) dt > 0 
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for each sufficiently small h > 0. Since aik = 0 and the quadrature (1) based 
on (x, E) is interpolatory, we get 

Jb 
(25) [Qh(t)- Q(t)] dt = aikl k Qh (Xi) > 0. 

Now note that the coefficients of the polynomial Qh (t) depend continuously 
on h. This follows from the fact that E is a coalescence matrix of Ei and 
from a general result about the continuity of the Birkhoff interpolating poly- 
nomial (see [6]). Then, by Markov's inequality for the derivatives of algebraic 
polynomials, 

tQhn+1 - IC[a b] - 0 as h -- 0. 

Therefore, in view of assumption 2), there exists ho > 0 such that Q-n+1) (t) :O ? 

on (xi - h, xi + h) for any h E [0, ho]. Moreover, 

(26) sign Qn+ 1) (t) = sign Q(n+ ) (xi) 
for t E (xi - h, xi + h). Using Rolle's theorem, the assumption j < r < k - 2, 
and (26), we conclude that Qhk l)(t) has exactly two zeros in (xi, xi + h], 

Q(k)(t) has exactly one zero, and Q'k+ 1)(t) has no zero in (xi, xi + h) . Thus, 
Q5k' 1)(xi) $A 0. In addition, 

sign Q k+l)(t) = sign Qhk+2)(t) - 
. = sign Q5n+1(t) = sign (n+ )(x) 

for t E (xi, Xi + h) . This follows from the well-known fact that f(c + t) 
f' (c + t) > 0 for any small t > 0 if the algebraic polynomial f vanishes at c. 
Therefore, 

sign Q (xi) = sign Q 
1) 

(t) = signQ (n+x)() 

for t E (xi, Xi + h) and hence, on the basis of (25), 

(27) sign ai, k-i = sign Q(n+1) (xi) . 

Observe that ai k-I :$ 0 if ai k = 0 (Otherwise, the quadrature (1) cannot be 
exact for 7rN-l') 

In the preceding discussion, xh was assumed to be of the form (A). Next, 
we assume that xh is of the form (B) with h and T such that 

(28) Q (k) = 

Then many of the above conclusions about Qh remain true also in case (B). In 
particular, 

signQ(k+ )(t) = signQ (n+)(xi) fort E (Xi, T + h), 
and since n - k is an even number, the latter holds also for t E (T - h, xi). 

As in case (A), we conclude that Qhk 1) (t) has exactly two zeros a < f, in 
(T - h, T+ h), and then 

(29) sign Q(k-1) -signQ+ 1) (x1) 
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for t E (a, /3). It follows from (28) and (26) that 

max IQ 1)() - k-)1 p. 
a<ta<p, Ih (t)| = A ~ (xi) =:p. 

Then, 

(30) I Q()(xi)I < p (2h )k-1i = j ..., k-2. 

(This is a standard technique. The details can be found, for example, in [3].) 
Applying the interpolatory quadrature formula (1) based on (x, E) and tak- 

ing into account (30), we get 

[Qh(t) Q(t)]dt = ai Qh (xi) 
a ~~~~~A=j 

=ai k-1 * Q(- (xi) + p - O(h) 

= P [ai k-I * signQ 
(k 1 

(xi ) + O(h )] i 
Since a < xi <f, (29) implies 

sign Q(k- 1) (xi) = sign Q(n+l) (x) 

and hence, by (27), 

ai k-1 * signQ 
(-1 

(Xi) = -jaik- 

Recall that ai, k $0 : ? . Thus, 

b 

b[Qh - Q(t)] dt < 0 

for sufficiently small h. The proof is completed. o 

Lemma 6. Let the normal incidence matrix E = (em+1 )7jN> satisfy the P6lya 
condition and have only even blocks in the interior rows. Suppose that for a fixed 
i E {1, ... , m} the row ei contains exactly one block (ei , ... , ei ) . Given the 
nodes x = (xO ... , x m+), a = xo < < xm+ = b, denote by {ak j (@)} the 
coefficients of the interpolatory quadrature formula based on (x(,), E), where 4 

is a parameter and 

X(4) = (XO , ... 5 Xi-, 5 xi+1 5 *4 5 xM+l) 

Suppose that 

ai n (T) = O and Q(n+l) (X(T)5 E ;T) = 0 

for some T E (a, b) such that 
(a) T =Xi; or 
(b) T = XI for some 1 $ i with the property that ej and el are not in collision 

(i.e., eik 'elk = O for k=, ... , N - 1) and el n+l = ? 

Then T = T is not an extremal point for the integral 
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Proof. We shall show first that 

(31) - -an(T).Q (X(T), E; T). 

Indeed, set for convenience 

I t ... ' 

D(t; i, ..., n):= det |{1, t, ..., 5tN , 

(x(4), E) 

where A, ..., n indicate the order of the derivatives in the consecutive rows 
containing 4. Similarly, 

D = D( 5.. n) :=det ({, E ,t }) 

We have 

) 
DN(R. .. n) 

Suppose that 4 is in a neighborhood of a point T satisfying (a) or (b). Then 

lo, = 2 |[D(t; Ai, ... ., n - 1, n + 1) *D -D(t; i, ... ., n) 

1DN(A .., n - 1, n + 1)]dt. 

Since the integrand is a polynomial of degree N - 1 , we apply the interpolatory 
quadrature formula based on (x(4), E) and get 

ai 
Dg atnD(t; Ay *A n - 1, n + 1)| 01 - a a(tn& 

Observe that 

a nD(t; A * * , n-1, n + 1) tn+1 D(t; A . ... n) 

Thus, 

01l =-ain (n+ 1) (x(4), E; 4), 

which yields (31) for =. 

We now consider separately two cases. 

Case A. Let T = Xi. Note that 

n+1 

{>(n~~~~~l)) DN+ (A 5.. ma n, n r+ 
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where j: teot and DN+l is defined in a similar way as DN .. , n) . Then, 

Q(n+l) (x(), E; ) 

( 1 )#UDN+ I n, n+2)D-DN+l ..n, n+ )DN (A I..., n-1, n+ 1) 

Since 

DN+1(I ... n, n + 2)/D = (-1)u * Q (n+2)(x4 E;4 

DN+1 (AI *I * n, n + 1 )/D = (- 1)u . Q (n+l) (4)E; ) 

and Q(n+ )(X(T), E; T) = 0, we obtain 

(32) Q( (x(4), E; 4) = (-1) *Q (X(T), E; T). 

Similarly, one can show that 

(33) AXai n ( | ai, n- I (T) 

if ai n(T) = 0. For this purpose, denote by Ei n the matrix obtained from E 
by setting ein = 0. Let y(x(4), E; t) be the polynomial of degree N - 1 such 
that 

E o, n,(f) = 1 . 
Clearly, 

rb 

ai n() = f y,(x(4), E; t) dt. 

Using the determinant representation of y(x, E; t) and straightforward cal- 
culations, we get (33). Note here that (33) is true for T satisfying (b) as well. 
Another proof of the relation (33) was given in [9]. 

Now observe that 

ai n _I(T) 54 0 if ain(T) =?0 

Q (n+2)(X(T) E; T) :$0 if n(n+ )(x, E; T) = 0. 

Then, using (31), (32), and (33), we obtain 

- 
=0, a2 

=0, 
2I a3 

The last relations show that T = T is not an extremum point for I(4) in Case 
A. 

Case B. Let T satisfy (b). The proof is identical with that in Case A if el n+2 = 

0. Suppose that el n+2 = 1 . This means that el contains a block (e1 n+2' ... ' 

e1 q) and, according to the assumptions of the lemma, q - n is an odd number. 
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The lemma will be proved in this case if we show that OI/Oa does not change 
its sign at 4 = T = Xi . It was established above that 

aI ai 4) . aD(t; A . .. , n - , n + l)| 

= (-1)"+'ain(4) DN+(A n - 1, n, n + 1)D. 

Lemma 1 guarantees a constant sign for D. Further, since a i n(T) = 0 and 
a -in')I -aT a l(T) : 0, an(4) changes it sign at T=r. 

Consider the function DN+l ( ) := DN+1 (R. ... , n - 1, n, n + 1) in a neigh- 
borhood of T = Xl. Using the Taylor expansion of DN+I (4) at T = T. we 
get 

D (qn (Tr)+- 
N+1() I (q n)! T)q- n + 0(tE - T jq+I-n) 

But 

D~q7n7 (T) = D ... , n - 1 , n , n + 2 , ... , q, q + 1) $0. 

Indeed, suppose that DN+1(A5 ... , n -, n, n + 2, ... , q, q+ 1) = 0. Then 

there exist two polynomials P1 and p2 of the form tN + which vanish at 
(x(T), E) and, in addition, p(n+l)(T) = 05 P(q)(T) = 0. Then p1 - p2 e UN-1 

and (PI - P2)I(X(T) ,E) = 0 Hence p1 p2, and consequently p1 0, a 
contradiction. 

Thus, D q-n)((T) :$ ?, and hence DN+ (E) changes its sign at T = T. 

Then OI/IO does not change its sign at T = T and the proof is completed. 5 

We are now ready to prove existence. 

Theorem 4. Let E = (e m+1 N1 be an arbitrary normal incidence matrix 
which satisfies (i). Suppose that for each a E { 1, ... , m} the matrix Ea satisfies 
the Polya condition. Let k1, ... ., km be the levels of the interior blocks of E. 

Then there exists a quadrature formula of the form 

f b(x) dx fai * f(')(x) + E Aj * f(j)(a) + Bj * f(j)(b) 
a i~~~~~~l ~~eo,=l *em+IJ=l 

with ADP = 2m - 1 + teot + tem+it and x* E (a, b), i = 1, ..., m. 
Proof. Set 

R(E) := inf{R(x, E); a < xi < b, i= ,...,m}. 

The polynomial Q(x, E; t) depends continuously on xi (see [6 or 8, Lemma 
2.2]). Then there exist points 5, ... 

i 
such that a < 1 < b, i = 

1, ..., m, and 

R(?,5 E) = R(E), 5 (a, X,, .. 
*4 4V in 5 b). 

Since 4 is the extremal location of xi, keeping all > , j :$ i, fixed, it follows 
from Theorem 1 that a < Ev < b for each i. 
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Next we shall show that 4 VA : if their corresponding blocks are in col- 
lision, i.e., if tkj - kgt < 2. Assume the contrary. Then there is a block 

= (sp, ... , s,) in the coalesced matrix c(E) which is formed by the coales- 
cence of interior rows of E, some of which are in collision. Moreover, there is 
a sequence 7 = (sq, ...5 , Sk) of l's, p < q < k < n, such that each component 
(i.e., original block of length 2) of 7 is in collision with the coalescence of the 
remaining components of jy. Assume further that 7 is the highest subsequence 
of ,6 with this property and the block /,i of the row ei has a highest level 
among all components of 7. Then , will occupy the consecutive positions 
(Sk-l Sk ) in the coalescence block fi. Since' 4 is the extremal location of 
xi, it follows from Theorem 1 that ai k = 0, where aA /l denotes the coefficient 

of f()(gv ) in the interpolatory quadrature defined by (?, E) . If k = n, then 

Q(n+1)(?, E; >) $ 0, by Lemma 6, applied to the block fi. (We use here that 

the whole block /3 is in an optimal position if its components are optimally 
located.) In case k < n we observe that the block (sni , Sn) (which is not 
in collision with other components of fi) corresponds to the optimal location 
4> = 4> of some xj. Thus, by Theorem 1, ain = 0. This yields, again by 

Lemma 6, that Q2(n+1)(, E; v) $ 0. Now we can apply Lemma 5 to split the 
node 4v and obtain a quadrature formula with a smaller error R, a contradic- 
tion. So, the blocks remain in their original levels {ki} after the optimization. 
Applying again Theorem 1, we get 

ai,k+ O' i= 1, ..., m, 

which completes the proof. 5 

Let us point out that if eo = em+l = (O ..., 0) in Theorem 4, the resulting 
extremal quadrature formula has double precision. 

It is a well-known fact that the nodes of the famous Gauss quadrature formula 
minimize the integral fa (x - x1 )2 ... (x - Xm)2 dx. Theorem 4 reveals a similar 
connection between the extremal problem 

||Q(x ,E; t)dt| --min 

and a Gaussian quadrature formula of Birkhoff type defined by E. 

,jm+l N 1 1 - 
Theorem 5. Let the incidence matrices E = (e) = and E = (e- yfl=l N1 

i=O, j=0 ~ij ,=O, j=O 

satisfy the requirements (i). Suppose that Ea and Ea satisfy the P6lya condition 
for every a E {1, ...,m}. Let 0 < eo, em+1 < em+i * Suppose that 

ki < k5 i= 1, ..,m 

where (kd)7 and (ki)7, are the levels of the blocks in the interior rows of E and 
E, respectively. Then 

R(E) < R(E). 
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Moreover, equality is attained if and only if E E. 
Proof. Assume first that E and E have the same boundary rows. There is 
nothing to prove if ki = ki for all i. Suppose that ki < ki for some fixed i, 
1 < i < m . Push down the block in the i th interior row of E one position 
and denote the resulting matrix by E. The assertion will follow by pairwise 
comparisons if we prove that R(E) < R(E). 

Let R(E) = R({, E) for 4 = (a, . 1 ... 5 4M5 b) Let (so,** SN I1) be 
the coalesced (possibly) row at the point v . Since there is no collision in this 
coalescence (see the proof of Theorem 4), (Sk , 5k+ 1 ) is the block corresponding 
to 4> . Assume first that sk,_1 = 0. Applying the interpolatory quadrature 
based on (?, E), we get 

Ib 
[Q({,5 E; t) - Q(?,5 E; t)] dt = . 

Thus, R({, E) = R(E) . Evidently, R(E) < R(, E) . We need to show that 

R(E) < R({,5 E). 

Assume that R(E) =R(, E). This means that 4v is an extremal point for 

the matrix E as well. Since sk - = 0, the polynomial (0, defined by (4), is 

the same for E and E. Then it follows from Theorem 1 that 0(k 1)( = 

f9 (k-2)(4 = 0 with k - 1 = kI . But this leads to q' 0, a contradiction. Let 
now Sk -1 = 1. Then there is a collision between the block of 4v and some 

other block in the coalescence of E with respect to {. This yields, as in the 
proof of Theorem 4, that 4 is not extremal for E. Thus R(E) < R(?, E). 

The proof is completed in the case when the boundary rows of E and E 
coincide. Now the general result follows from the above reasoning and Theorem 
3. o 
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